Cruising Review


Publication Title | THE USE OF UNMANNED AERIAL VEHICLES UAVS FOR REMOTE SENSING AND MAPPING

Drone Information Series

Drone search was updated real-time via Filemaker on:

Drone | Return to Search List

Search Completed | Title | THE USE OF UNMANNED AERIAL VEHICLES UAVS FOR REMOTE SENSING AND MAPPING
Original File Name Searched: 203.pdf | Google It | Yahoo | Bing



Page Number: 001
Previous Page View | Next Page View

Text | THE USE OF UNMANNED AERIAL VEHICLES UAVS FOR REMOTE SENSING AND MAPPING | 001



THE USE OF UNMANNED AERIAL VEHICLES (UAVS) FOR REMOTE SENSING AND MAPPING
J. Everaerts
Remote Sensing and Earth Observation Processes Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, BE-2400 Mol, Belgium – jurgen.everaerts@vito.be
Inter-Commission WG I/V
KEY WORDS: Platforms, Technology, Multisensor, Research, Unmanned
ABSTRACT:
The ISPRS congress in Istanbul has adopted a resolution that called for the study of the use of Eaves in remote sensing and mapping. In the past four years, a wide range of these platforms has been used in the civil and scientific world, equipped with a multitude of instruments, to deliver data in w variety of applications. It is an area of remote sensing that is very active, but not yet near to consolidation. This paper does not attempt to make comprehensive lists of platforms, instruments or applications. Rather, it tries to give the reader a sample of what is possible today and in the future.
UAVs as remote sensing platforms have given many research groups the opportunity to acquire data at sufficiently low cost to justify the use of remote sensing in the first place. These platforms may therefore become the catalyst for many new users and uses of remote sensing, and will become so even more when airspace regulations have been adapted to accept them as regular aircraft.
1. INTRODUCTION
At the past ISPRS congress in Istanbul, Resolution I.1 was passed, saying:
“The Congress:
Noting
• that unpiloted aerial vehicles (UAVs) provide a new, controllable platform for remote data acquisition;
• that manoeuvrability of UAVs permits remote data
acquisition in environments dangerous to human life
• and/or inaccessible to direct examination (e.g. forest
fires, volcanoes, toxic spills, transportation disasters,
• etc.);
• that UAVs provide potential for acquiring remote data more rapidly and at lower cost than from piloted aerial vehicles.
Recognizing
• the range of potential applications not readily
possible using piloted vehicles over small geographic
or site specific
• areas on a real-time basis at affordable costs (e.g.,
incident analysis);
• that new technologies will be required to design and
develop miniature platforms and sensors. Recommends that
• an inventory of current and technologically feasible miniature sensors be undertaken;
• an inventory of current and possible future civil applications be catalogued and documented as to
• appropriateness, levels of readiness, and comparative
cost;
• the performance of the various UAVs and their
onboard sensors for various applications be
investigated;
• a report of the above findings be produced by ISPRS
In what follows, an overview is provided of projects undertaken in the past 4 years using UAV platforms. It does not address the inventories mentioned in the recommendations, however. The Inter-Commission Working Group I/V “Autonomous Navigation” has monitored the progress in this area of research, and has concluded that it is not yet consolidated to a sufficient extent to make inventories useful. As a consequence, most of the issues raised will be addressed by citing examples, rather than lists.
For remote sensing or mapping, military systems cannot be used, in general. Therefore, these systems are not considered in any further.
for the global community.”
1187
2.1
2. UNMANNED AERIAL VEHICLE SYSTEMS Layout of a UAV system
A UAV is the prominent part of a whole system that is necessary to fly the aircraft. Even though there is no pilot physically present in the aircraft, this doesn’t mean that the it flies by itself autonomously. In many cases, the crew responsible for a UAV is larger than that of a conventional aircraft.
The aircraft is controlled from the ground (the Ground Control Station or GCS), so it needs reliable communication links to and from the aircraft, but also to the local Air Traffic Control (ATC) authorities if required (usually when flying higher than 150-200 m above the ground). The GCS provides a working space for a pilot, navigator, instrument operator and usually a mission commander.
The data received by the GCS from the instruments is either processed on-site or forwarded to a processing centre. This can be done using standard telecommunication means.
Of course, when operating low-cost systems, most of the GCS functions can be combined in the handheld remote controls that

Image | THE USE OF UNMANNED AERIAL VEHICLES UAVS FOR REMOTE SENSING AND MAPPING



the-use-unmanned-aerial-vehicles-uavs-for-remote-sensing-and-mapping-001

Conrad Maldives Drone View

Learn more about becoming a digital nomad: Visit the CruisingReview.com website

YouTube Drone Video Site: Visit the YouTube website

Digital Nomad Course: Course Info

Search Contact: greg@cruisingreview.com